

7.5-GHz Low LO pumping Cryo-CMOS Parametric Amplifier for Quantum Computing

Junyong Go, Seongwoo Jang, Sangcheol Jeon, Junhyun Kim, and Ho-Jin Song Electrical Engineering, POSTECH, Pohang, Korea

Abstract

- This paper presents the design of a cryo-CMOS parametric amplifier suitable for operation at 4K and mK temperatures within the readout chain of quantum computers. The measured gain is 0dB with 20dBm LO power at 300K, and 15.2dB with 0dBm LO power at 4K.

Introduction

- CMOS parametric amplifiers (CPA) offer a scalable solution for qubit readout at both 4 K and millikelvin temperatures [1].

- The benefits of CPA are achievable only with noise performance comparable to HEMT LNAs.

Fig. 1. RF reflectometry qubit readout block diagram

	JPA [2]	CPA [3]	HEMT LNA [4]
Temperature	mK	mK / 4K	4K
P1dB	~ –115 dBm	~ – 57 dBm	- 53 dBm
DC power	X	X	~10mA

Fig. 6. Simulated conversion gain and noise temperature at 4K

DC power

~10mA

 \rightarrow In this work, a CMOS-based single-balanced mixer-type parametric amplifier combined with a diplexer is proposed for low-power and compact-area implementation.

Amplifier Design

> RF Matching Network

- Increasing ΔC by series inductor in the diplexer \rightarrow higher gain —
- The parallel inductors \rightarrow lowering G_{RF} for RF matching —

Simulation Results

- Simulated with P_{LO} of -10dBm at 4K \rightarrow conversion gain of 17.3dB & min. noise temperature of 14.2K.

Measurement

Fig. 7. A photograph of die chip

Fig. 8. Return-loss at 300K

Fig. 3. Core structure of conventional and proposed parametric amplifier

> Core Structure

- $R_{p,LO}$ and $R_{p,RF/IF} X2\uparrow \rightarrow$ gain and noise performance at reduced LO power.
- > Diplexer Structure for LO/IF Matching
 - Forming a LPF at $f_{IF} \rightarrow$ higher gain by $G_{IF} \downarrow$
 - Acting as an LO short \rightarrow LO-IF isolation even in a single-balanced structure.

Fig. 9. Conversion-gain at 300K

- Fig. 10. Conversion-gain at 4K
- Chip size : 0.66 mm \times 0.79 mm = 0.52 mm²
- Return-loss at 300K: RF and IF ports are matched at 7.5 GHz, and the LO port is matched at 15 GHz.
- Conversion-gain at 300K: 2.5 dB with a 15.5 GHz LO at 20 dBm.
- Conversion-gain at 4K: 15.2 dB with a 16.4 GHz LO at 0 dBm.

Reference [1] M. Mehrpoo et al., IEEE L-SSC, 2019. [2] J. Aumentado, IMS, 2022. [3] G. Baek et al., IEEE Symp. VLSI Technol. Circuits, 2022. [4] LNF-LNC4_8C: 4-8GHz Cryogenic LNA, Low Noise Factory, 2018 **Acknowlegement** Chip fabrication was supported by the IC Design Education Center.

